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. Introduction

Motivation

MBFIN—NEE2HIAERBER R AR, ERIAEEP BIFAFIL AR
BEGFAM B, mAeEREETY, BARAMES S PAH L2 All variables 95 557 o

& AR IEAINFE R PG E R T No £IL-TFEHE—I1TH P, “EE A IZM A
TR IR 6 A il A AR K X B H 8 R B TR EAN A T AR Bl e, BARFRARA
EAR, IVER S E LS RS TAER R AR ANHENEFR, £HF K. T
K. BFRFREFFLR, HFPHRBRERELFL2RAERBER,

KEEBRFEERIAZN G —AREAR, CARRKEATHROEARXA. ARXAH
B, A CAIL g4 XM & RRAEIEH T Lo

A T ¥ A& AR A #5404 Discriminator, & A1E 248 A N = AT PN o BP KA T LAK & R A%
a4 A 5 RE S5 E R SR, K EIAAA AR,

BEFIA Tk, FAVEEF 5] — A5 AR T e — B agkdt. X 54 mAZ A 89 75 %) 48
Beo Blda, ST VAINA — KR AR R P RBRRAMIR, KRG LR =LK, B
T R AR F A Bk A A,

o AR R A SR R AAAE AN, SR B AR S L RAR A SRR RS A
BHMEAR F 5 2], A2 AL PO S A5 09 ) R AL AL 3 RO B s R SR A9 MRIR, KB F A&
BA LA TR 250 # Ltk 2 (Asymptotic bias).

Hit, mRBRALE (FRLLFERA—ERBENIEL), WREMNAXETF I 4
T K5, L&A X% L 0HE, AN Ay FIAEAR LRI AES AT A FHES
95k, R, MATHEENS ), ARKEERIETRADTHFHANE (y
AB) W%, Plde, EFREFIGHEALT, &NTRAAVEQOIRICHER, 252
S AARTCHE R, ERXAFFEILT, TR AR £ R Rt o £,

AV Ty 5T AR B AV A R 6 R b ., X IR T AR T SA6 S0 TUNAE 5o
XAYiE REAB PR, BEXELAEL, it LR fe R R XA OTR FIAZ, 8%
WARALBEBEERTFD, mEpaHmDE (VAE) &2 28 AT a8,

KA, T AN A A — A& XE M ALK Ko 8 5% H & T2 J38 A iTAZ R &L, AN
A H N B R G R AT AR 29 R A A 4F R A9AE X op o B i TN R X — B 5, K
VST AL b F 5 B AT 3038 AR R, A AT H AT )5 82 09 T

o amBE (VAE) TAEMERAAANBE DR AR RA : S B RIRAAEA
(Encoder or Recognition Model), A% f# 2 35 3 4+ s 4% %! (Decoder or Generative Mo-
del)o XANMERANE & ., RARA @ ARBEURBEL SR HGLME, BHEE
XA R AW F ] ey Rd R 23 L AH, RiTk, £ RAER N IR A
ARBT —AMER, HARBFIRENA ELET, QIETROGEHIRE, HRHE N+
IR, TR AVAEAD R A s AR A 6 UL AR,

5E@e T 5 (VD) Aatk, VAEAERG—/MER A TRAER (LA A RBTER)
RLAMNEEG—A () H. X5 VIRR, BEXNHNHIERPIHRA—N
LA EHA, EA T REBEERVAFIRT  RARAE A — AR RZRIMANEH
T2 XFR, BAARA FHIED, M RARBTUARMEETE 0, 2d TH
MiEF X, RE—RMMANB KT AT IRE LR T Tk, Rbthirasttig, K,
BT B ORN AR, IFREREF DTG T IIANRERE
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R VAE 22 5K K 89 7T dk A IR B KAV e A LA MAR AN E A H T/ £ 7
R EMBBAMOGH A, Amm S HBEF T £,

Aim

provides a principled method for jointly learning deep latent-variable models and
corresponding inference models using stochastic gradient descent.

GAEREAREE, FUREFIREATEISETERAT ZHEH,
Probabilistic Models and Variational Inference

BT BERE G SRR LRIBR D T F A X R SR, KAVEF F R4
A6 3Lk T A AR R — AL O AR o AP R A AZ B Aot B i () BERE
SRR XA EL L, RZEGBFRRN XX kT K EMEN T KA
AR PP T EZ R 648 X A IR A X R o

AMA X R TAHAARAMNEEZNQE, LRESHLBMNAZ@EN, EADBHEMAKER
A TREGUMNENT EE, LR HE, REZEGATHA-ANE—HRE.)

AR EF x R K B AdokEIAZG IR, LARGBESH p*(x) L AK 8,
A E XA AL R GREA pox RLMEIANRELAL, L FLHN0:

X ~ p(x)

5] R AR — AR AR 0 0ITAL, (R 1T WA 4tk 9B B po(X) AT
HARB LT T pr(x), BPRETFALATILN B 69 X, PR T LAk

pg(x) = p*(x)

Conditional Models

EAERFEEAEA Ed, KA KS LA AR pe(x), BARE T AR pe(y|x),
CHPATRE G FHEST p*(y|x): BPAEMME gxe9i L, S TSy EstiTofh. &
XA LT, bold(x)ill # A AR AN AR A G N o 5 AKMHHILEM, RMNBEFHHKL—A
B p(ylX), IR A HRENT, B TALAT X Ao y:

Po(y1x) = p*(y1x)
Directed Graphical Models and Neural Networks

HAVE A A 6 5% B 42 A (Directed probability graph model), & N et#f W%, & & B4
AR —APBEERA AP AT EMIAEIAER— N A ATE, SEREBGT 6
BRA50 0 0 R Ay SR 38 50 AR e B 0 A B AR

pafts %)= TToali 1 (%)

Po(x) RAGET H 5 j L E e b
Dataset
FAVCEN 2 14338 B 28 R B9 3 3B & D:

D = {x1,x@, ., xM) = (x®)" = x(M
i=1
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FKIBEEMAIBAR — (RT) ZHAGRINEAEAR, EXMFFLT, WNHKIE D=
Mﬂ_ﬁﬁﬁ&#ﬂ\ﬁmd)ﬁﬁ4ﬂ\$%&uT'%EK%%T%T HAE Y
ﬁil%%ﬁ%&ﬁ%éﬁ?%iﬁcl% KRS E AR ABRMT R R AT

l0g Pgry = D108 Py

XeD

Maximum Likelihood and Minibatch SGD

PEEAR A R F WA ARE & & K38 R (ML). Maximization of the log-likelihood cri-
terion is equivalent to minimization of a Kullback Leibler divergence between the
data and model distributions.

AL Ty K FLE AT F 69 77 ik & stochastic gradient descent
FIE—NEKAFEEDO S N NI & RATR E B RARAL ] EEAN i’fﬁs%*ﬁ LHE, B 7’7

T HERMN K. Bk, &4}]&#Md:ﬂxﬂ/\ll WERIE M (B, RDAN D, FF
HHAS D E RAE B A9 B BANA RIS D E B B A A BA é%iiﬁﬂééﬂﬁi%?
FEAMN IR LA A

AR TR, TEkE (AXAEFHE 161, RbARBESEEER):

E[V, log pg(4#)] = V, log py(D)

AMAND AU 5 8 3 FHE, Log ol i) A HEE 893 H A, log py(D) 2
BB S 69 3 AR

X HAAIR T A A
i FEAKEE D, AxFHMAR

log py(D Z log pg(x

X€D

3T ORI M, R RARE

log pg(- Z log pg(x

XEM

FEHAE £, D BB 69T RO AR FT AL A B AR SR A9 3T R

1 1
— logpy(D) = — log py(-4)
N, ° N . ¢
i85 A A9 R ARBOR minibatches, AT LA AR iR KA AR ] 69 AR A% 4
1
N_ lnge(D) l0g pe Z lnge

D Jl JI/ XEM

1 1
=V 108 py(D) = 2V, log p(. ) N > Vg logpy(x)

D v M XEM
T B AR I EAEF T EA BB RGO

BXHBRDANNZKIER, DT MZF AN AHKEE, LD ERBERAEIESR
PR LA A
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AN H A SR 0 3¢ B AN IRAR

V, logpy(D eZlogpe ZV log py(x;)

i=1

DB R A A AR AL

V, logpy(-) ZV logpe( x)

Jll}1
gﬁla}tb{—u}iﬂﬂ Efx16117, REANLNEBARHELEDTHETT

4311&4’”‘17317’\’ MER, BRARIB IR A6, KAT AR FIE R & T A4
Hit A2 .

E[v, logpe(a%)]=[E[ ZV log p( )]

/il}‘]

BT M PO ARARIZE SR, BTV

Nuit

E Z v, logpe(xj)l =N _,E[V, logp,(x)]

j=1

A P XANRDF S I —AH A, B

N.A’{
E[V, log pg(u)] = E[Ni Z Vg log Pe(xj)]

M j1

= iNrﬂ[E[Ve log py(x)]

M
= NE[V, log py(x)]

h T 4 & X RAEA KR T RIY, BT A E[V, log pg(X)] 5 FF L3t 2 2 4R 6 5 09 F
¥){h:

N
NE[V, log py(x)] = Z V, logpy(x;) = V, log py(D)

i=1
1.6.1.1. Coefficient proof

RATAMEB DM ERIE S ENRBERORDEFR, EBEHLETENDE RS R,
XEZREAHAGREL:

Lol b F BRI M RREARERD TR, EHAKEN D
F No A R FCT AR e HABOHEET, R E AP L ERNHIEE
a4 B — o

2. RAmAE: XA EAHET D IEHIEM AT AT T HEARKIEE OB A
My AR _EAR A i

5T NI SR G 3T AN IR AR S
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V, logpy(D) = V Zlogpe ZV log py(x;)

i=1 i=1

5€ SN b B B 3 RO AR AR
V,logpg(a ZV logpe( )

MABIL BRI IEE P B EHAE BT M PORIEERIE LR H
1y, KAVAH:
N,

E[V, logpy(.4)] = E ZV logpe( )] =N _,E[V, logp,y(x)]

ATHEDMERIBOHELEINE EFTENMIBEEOHE, ZNEZ2HIMEHIELN
o R BEAT IR A . B AN SR G 09K B AE T A

¥, log py(. 1) Zv log py(x;)

M]'I

Ny
[E[ﬁe log Pe(,ﬂ)] = [E[Ni Z V,log pe(xj)]
Z V, log Pe( )]

j=1

= NﬂNM E[V, log pg(x)]
M

M

= NE[V, log py(x)]
BT XAMKEANSIEE T AR, &AM A:

NE[V, log py(x) ZV log pg(x;) = V, log py(D)

i=1

Learning and Inference in Deep Latent Variable Models
Latent Variables
BAVT AR AT — PR 2NN A R BT RO LA R, BT EL

AR A 89—, @&M%T%Mﬂbm l%uMT&%ﬁ%%%#%%c&MK%m
ZREATIHOET S, ALEGEEANEEXWEALT, AoBEERRLE T/
MEE X FBH LTz GREDH py(x|2)e MMEE X AL DA E AT AXE

p9=fp9(x,z)dz

XALAEAR A (AR 209) DLMAR SRR, B CIEA 6 B3t
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EAPET X 9 Xp TR RiEM. Rz RER, HHLp,=(Xl2) R—AF
AT, A2 py(x) SR —AGIRAD T 3 TG Z, py(x) T AE AR —NEIR
B, XA RASBAMILF RS PR K, XHENL% R EMR ESMENT,

Deep Latent Variable Models

deep latent variable model (DLVM)

AR A A 2 B L BB B R BARA po(X,2) o BB TR FRLEET
LA, 42 pg(X,2 | Y)o DLVM 8 — AN E 2R H &, B A @R A F 69 FA BT (LB &K
oA AR (Blde FAE S T), LA T po(x) LT AAEH B2, e s
JILFEEWRM KR . I ERARAEFRERLETEEALELME 09K EMH p*(X)
BAEw AR A

R R A F A AR F LA DLVM A8 i3 VLT 254945 52 69 5 AR AL
Po(X,2) = pg(2)py(x|2)

H W, pg(2) Fo py(X|z Rt 0 p2) BEBRMABLE z9RRrH, BACK
AAEAT AL 2K 3 A F A o

Intractabilities

dlvm ¥ 3 KR 52 5] 69 £ % [ % 2 the marginal probability of data under the model
VAL IR,

W T ot H A MR (AR BIENE) 89 T AZ F 89475, po(X) = [ pe(X,2)dz, not having an
analytic solution or efficient estimator., B TiX A T M, KAV AL L AR AT
W F AT, AL AT T A AL A BT G AR o 1T H 3 % 47X Need to integrate
high-dimensional space, X £ & FLIEFEAEN., AL MLE ¥, &MNEFERK
AR AR T BEE . 3 F DLVMs, X & 2 0 %M A py(x), 128 F KT
M, AT MLE R RAEM., 9 THE T EALMARRTITN, RMNAFEAL
487 (Variational Inference) 33 R K&£EFE T F (MCMC) 7 & RLME 15
Mo X e Ty il T G N T AR AG AR AL B NPT MR GG AR5 B AL . B AR, AV R & ALy
(A @A) p(6]D) 89 )6 1o il % s AT At 5, & B MAERH K,

. Variational Autoencoders

Encoder or Approximate Posterior

dlvm & X AP AL AR T 49 3T AR A A B I Fr 6 B AL, T 4 B %74 35 (VAES)AE R 2
BT —Ft E R G0 kR hAL dlvim, F45 448 5 09 IEAEARE B SGD #HATHAL,
A T DLVM )5 W 4 32 fa 52 5] 9] AL A ST A 2209 9188, &AMV T —ANSddEm
RA qy(2]x)e AR LA G E RIRARA . A ¢ RoFidEEBAG LK, £
AT HH . RNRLTH>EHK §:

04(IX) = py(z1x)

1% DLVM — 4%, 324 A ST AR (JUFEAT A v B AR AL

M
q4(21%) = q,(2;, -2y 1X) = ]_1[ q¢(zj | Pa(zj),x)
=
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PG 21)7%2"2% z] Eﬁ@@*é@ig%%é\c ‘Ifj DLVM 7)‘%'{}1, %\ﬁ q¢(z|x) ’ﬂ‘y}{{im(ﬁi}i
% ) 2 554

(4, logo) = EncoderNeuralNet¢(x)
q4(21x) = N(z; u, diag(0))

AV ) A 25 B A 22 1) 26 3 AR b 69 PR BB A BT B R AR, XIT LG R 4%
GO Ty RIL T ET AT, P B SBR AR T, mAEANRAE R F RiE KR
870 BIL-FREARIE, HAVT AR B AR LA HRALIER, FF AR SGD 893 F .

2.2. Evidence Lower Bound (ELBO)

Prior distribution: pe(z)

Z-space
)
Encoder: qq(2z|x) Decoder: pe(x|z)
A
x-space

Dataset: D

Abbildung 1: It shows how to learn and generate new data through mapping between latent
variable space (z-space) and observed data space (x-space).

VAE i@ i€ %20 B Ae i B M 2, ALY, ERAMAEEN> A, KA T RHKHE
53 B AN FEARE Ao A Ao
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o

T 54
log pg(x) = Eq¢(z|x)[l0gpe(x)]

-pe(xrz)
| Po(|x)

[ 'pe(x,z)qd,(llx)
(0]
a4z 8| g (z]x) pylzlx)

[ -pe(x,z) q¢(z|x)
™ o) 8| g @m0 || Fase0] 8| oo

=Lg(x) o =Dy (94X Ipg(zIx)
(ELBO) alee o)

- |EQ¢(Z|X) log

=k

% =M x%qd)(zlx)lﬁ Po(z|x)Z T 9 Kullback-Leibler (KL)#< & £ 3F fi #9,% % F 0 0,
qy(z|X) F THERBEED T

Dy (521X Ipg(z1x)) 2 0
$—AREH TR, LARHNIEHE T R (ELBO):
£9,¢(x) = [E%(zlx)[log po(x,2) - log q¢(z|x)]
W F KL #0% 49 4F 1, ELBO A& 348 69 3 £ & 69 T F:
Lo () = 10g py(x) - Dy (a(21X)Ipe(21x)
< log py(x)
2.3. Stochastic Gradient-Based Optimization of the ELBO

ELBO 89 —ANEZ WA A, © A HE R AU B T % (SGD)X BT A A #( ¢ #= 0 )3 4T F£ 4
FA

BAVT ARG F=0 09 AL A4S E T 48, FAALEAL S ATR9MA, B BIKEk,
Los(D)= D Lyy(X)

XeD

—A R, # R R ELBO R Vg (Lo (X) R AL IEE . K, Edo BATH R
UK, B4 BT Tl b7 BT (L 4 (6), AR BV T AABAT 1 328 SGD. £
RAET A K OTF ELBO & L Ap#h E AR 5 133

Veleﬁe@(x) = Vyk, ¢(z)[log Pe(z, Z)]
= IEqd,(z | z)[ve(log PG(X, z) - log q¢(Z | Z))]
Monte Carlo
= Ve(log Po(x,2) - logq,(z | x))
= ve(IOg pe(xr 2)
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2.4. Reparameterization Trick

3 FELEHE ST M R £ SRR, T8 E 269 T A 33+ ELBO #4T¢A=

08t s, EARAELHMHT.

2.4.1. Change of variables

B, BAVHMMEE 2~ qy(z | X)RFTH G —NEMEE € 69TH(TE)L#H, SRz

Fa:
= g(€, ¢, %)

A, MNEZ e G xR Ax. T—FHANIBEENEE g K TH T

Wt 77 K, M w340 Z 7T VAR 2t &

FHHABRNE TG L2 RBE T CHARTHRLSGRFIAESA TS5 KL

A2, AR AFH LT ERAC R A T fE .

Algorithm 1: ELBO & [iALtL AL, & T % kR T 2 K48 Fp(e
R —AREMMAAATAL, AL IANSAZHRA @SR TS
Auto-Encoding Variational Bayes ¥ %,

Data:
« D: Dataset
. q¢(z|x): Inference model
* Pg(X, 2): Generative model

Result:
+ 0, ¢: Learned parameters

(6, ¢) « Initialize parameters

while SGD not converged do
M ~ D (Random minibatch of data)
€ ~ p(€) (Random noise for every datapoint in .#)
Compute Ze’ ¢(</fl, €) and its gradients , ¢ZG, ¢(¢//l, €)
Update 0 and ¢ using SGD optimizer

end

)09 R, HiX
> N =+ 37 (AEVB)the

2.4.2. Gradient of expectation under change of variable
ERE RS R, KT HNL A GEAEE & &7
|Eq¢(z)[f(2)] = [Ep(e)[f(z)]

i z
]

Za) ’ = g
TR 8 R4 F T A

¢ 9,22 [f(2)] = V¢ Ep(e)[f(z)]

BT zR e @ x TS, RAVT A M Z B LG A2 iE 5%
BRAE £, KAV AT B 3 AR B 6 A AE A

(€, @, %) BT AP T I, BR B F Aot BB H A TAFT M, HATT At

J& i@ iL A p(€)
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Eqy ol f@)] = By VoS (2)]

= V¢f (2)
Original form Reparameterized form
f Bac-kpmpl f
- aylzix) V7 2 = g(pxe)
¢ X Vq, f ¢ x =~ p(E)
: Deterministic node — : Evaluation of f
. : Random node =—Pp- : Differentiation of f

Abbildung 2: This image illustrates the reparameterization trick, a critical technique in va-
riational autoencoders (VAEs) for efficient gradient-based optimization. The trick allows us
to rewrite the sampling process of latent variables in a differentiable manner. .

B2 REFT EHMSMAETN TAFRE, TEQIHEATRANINL: R4 XA E a5 4
4&7?55{40

£ B: B4 X (Original form) H B THAHHMA X (Reparameterized form)
1. P EET: 1. ¥ EET:
o &R & .5 (Deterministic node) : % — & &7 % (Deterministic node) : %
TH R B, e BARLHK f. THERT A, wBARHE S,
# &% % (Random node) : & TR AL — % &7 .4% (Random node) : &~
TE, BT E 2z, M E, RP €.
2. Wik 2. BTk
c MMEE z RAEEEA q¢(Z|X) +R — BHEMEZ ZETAE P, X 87T L
o #: z=g(p, X, €).
o BARKHE f RBT z 258K do — €M 5T p(e) KA YR
2. WA e
o« BAVAR R BARB R f KL AKA 3. AR
HH P — BT zAERE G, x GTHIHK, K
© WTF Z R qy(z]x) ARG, LEE AT ARt z #E4T R 1% 4k .
Btz #HAT R, m kst K — EAEAFEMT A A ¢ KFH&K
Fo A ARSHE fo

TR AR T P K
CEET B BBLE 2 ATARS e SR P WMEIE x OTREK: z=

(€¢X)

2 MRS ANLELRHNLAHRGHNLE e 2T:Ey[f(2)] = By [F@):

10/ 18
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2.4.4.
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3. MRS KM BB S AR S, R T RO, Kmit i
H Ao
EE L GRS

o AR HETAT: BIEBFRAIALINIAL, AEIFH T VAR T R @RS H
o« WEITHEAER: AUBETHE I, £ RAEF T T RERTHEMSET,

Gradient of ELBO
AEZHFHMAGTAT, BT AR L q,(z|x)5 —4p(e)o ELBO T AL 5 A:
Log(X) = Eqz [ 108Po(X,2) - log q(z | 2)]
= Eyo|08Pg(x,2) - log qy(z | X)]

B, #AVT A A E AR K ELBO 49 R $ RAFF F5HEL, (x), b KAk &
B p(e)ay EAR 5 H Ke:
€ ~ p(e)
z=g(¢, x,€)
[9’¢(X) = log pe(X: z) - log qd,(z | x)
X — & P|4% 4% 7T VAZE TensorFlow ¥ 34+ 7 2 T AF T B, HFERT IS LK O0F= .

% H R R MAEARA Auto-Encoding Variational Bayes (AEVB)H . £ —ft3eit, =4
B AL ELBO 4% i 4% AR A REALHE BT N et A7 (SGVB)fE 1 o X AME 7 B T AR kA%
AR AR B R

Computation of log q¢(z|x)
ELBO(f&# &)89 it H & 2t H % & ETHq,(2|x), % RARX, b RAEZRF M bYe, ZA
XARE B A AR n%;ﬁ’cmx\’}fﬁifﬁ 8 L #g().

EFE, BAVGE T B EEp(E), BAXRPITREE DR EZ. REg()ATHE K, N
EARZBIEHE R R XA

(B T3 Aol B BB B0 PR A 5k 09, 1L 2.4.4.1)
108 9,(z | X) = logp(€) - log dy(x,€)
o ﬁm%T%ﬁﬁ() G475 X3RRI T 3,0 A T A € 5l 5 TR FTA —Br

myM&d=mq%%¥”

0z, 9z,
o, " o€,
e dzz) [
o€ 6(61,..., ek) 0z, 9z,
oe, T og,
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deduce

BAREMNH —AENEE 2z, CBE—ANTHRELTEN T g HENE S € 3], Bp:
z=g(g ¢,x)

AR E DR TN, R z=9(g), AL z 9BEEF B LK q¢(z|x) Fo g 89
MEZELH ple) Z M AT RF:

(z|x |det( )|

{2, B HENEBE 2 5id az 2wk a—e BAVE 4% R AR T HAT 7)) X 0935 4 7 -

) ot

BRE X R AT
o€ 1
4@ = p(e)| det( 5| = p(e)
¢ oz det(a—e)
o€
oz\|™’
oo
95(2) = ple)|det( 5=
Factorized Gaussian posteriors
— AN R — AN £ 8 factorized Gaussian encoder
9,02 1 %) = ¥(z 1, diag(0?))
Jtb, p A logo B A% B A4 M 25 EncoderNeuralNet, (x) 3k 7 :

(2 1 %) = M{z;p, diag(o?)
J& 360 B T AL A B fa/ﬁ'-xﬁz 89 & B o Ap 69 /AR

aytz 1= T aylzs 1) = T (z,7)

FroMEMEZ z R TAMEES)H ¢ X AMTHRGLZER:
€ ~ N(0,1)
(u, logo) = EncoderNeuralNet¢(x)

=U+00€

MER zHTHGIETILIESE R IT A4S, At AZKTER O

0z .
% _d
¥ iag(o)
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XA T XA LS A AR GRR, BHAFRATI XA AATE G4
Fa:

logd¢(x, €)= log|det(§)| = Z log g;

an
257
m.
&

loggy(z | X) = logp(e) - log dy(x, €)
Zlog]\fe 01 logo,.

Full-covariance Gaussian posterior

B X &6 % T A S 4 BA W77 £ 69 & 0
qy(z | X) = NV(z; 1, )

B EH ARG T X4

€ ~ N(0,1)
z=U+Le

AP LATERL=ZA%ESE, AKX EIAFEELE. FHAXKTEFRZLT 2P LFH
WMEAMIHT £)e TR WG ZHMRA, BTRATANKREE, BA:

oz _
o€

ALETEEL)Z AR, AATH XA LM A & T F 8RR
0z
log|det(£)| = Z log|L;;]
J& I R T ROt H A

log q,(z | x) = log p(e) - Z log|L;;|

W7 24E1% 3 7T VLi i Cholesky %447 2] :
s=LLT

Wy Z4E1% Y 693t A2 h

3 = E[(z - E[2])(z - E[z])’]
@ikslNe, HMNA:

2 = E[(z - E[2])(z - E[z])"]
BT e~N(0,I) A:

E[ee™] =1

Wi AP W% RIS %y logoA= L :
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(u,logo,L’) « EncoderNeurNet¢(x)

A FELAE %

LeL, oL +diag(o)

mas
LA A, gt B AT reaEH 1, 3 A% A& LTt R o,
T BTG, 6 %o 5 94T A

log|det(g—z)| = Z log o;

Algorithm 2: ¥ # 4% % ELBO Lipt&it a9+ 5, AT EA &7 £ S Mg A fe
FHRAGY A £ AR A 6 VAE 700 L A —NERIEE, T2 M T4 T i
PRGBS, AR LERALAR, HAXTAHA—.
Data:

+ X::adatapoint, and optionally other conditioning information

« &:arandom sample from p(€) = N(0, /)

+ 0: Generative model parameters

+ ¢: Inference model parameters
* Q1) Inference model

* Pox.z) Generative model

Result:
« L: ¥ 3045 % ELBO Ly ,(x) 89 i 4 71

(u,logo, L") « EncoderNeuralNet¢(x)

L<L,. oL +diag(o)

e~N(0,1)

Z « Le+p

oger < = Zi (3(€F + log(2m) + log ;) = qy(z1X)
logpz < - Zl(%(zlz * log(z"))) b= pe(z)
« DecoderNeuralNet,(2)

logpx < Zi(,Xi logpj * (1 - Xi) log(1 - P,-)) b= pG(Xlz)
=L C L

™

N NS MNNe

+ -
logpx logpz logqz

2.6. Estimation of the Marginal Likelihood

BN —AVAE 2 )5, BT 4 R FAE R K R AE A T B R , 338 209 IR
MR VAR TR

log pe(x) = log IE%(Z | x)[Pe(X, z)/Q¢(z | X)]
Bqy(z| )8 MAE A, HEHTTETEN:
1<
logpg(x) = log 7 > p(x,2")/,(2" | x)
=1

A 20~ (2 | %) R b AR A F 2] 09 1 K FH K
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2
R —ANFeet$ 20 54 [ &N HE %,i&éiﬁwm%iﬁ
9
{f, BT A E AR L, EAME T AR ARIE T 5 IR 8910 ALK

Marginal Likelihood and ELBO as KL Divergences
P GANR R — AR BT 69 F, @833 ELBO A94EAL, T AR B RALL MR, RS
ELBO #9 % % tt, BP# ELBO Ao A 5% # %R Z 1049 £ 36

%% ELBO # £ % by — ﬁﬁ&%ﬁwiﬂﬁﬁﬁi%i(iﬁﬁi%i%ﬁ&i
T A FAE S A B9 A 77),3X 7T VAl iF ELBO A= KL #0 & 2 18] 69 8% A R 32 iR,

T 5 2 R4 Evidence Lower Bound, ELBO#= Kullback-Leibler & 4 47 ’5 T B 47 % (VAE)
W 4938 %A% (Marginal Likelihood) 48X 69, 18R he i@ i3 42 5 A RAE A 69 R F Mk
¥ 7% ELBO #9 % %, 132457 ELBO A= KL # B Z Ml &9 3 8% &

I ZARIR e 5K KA AR R

HF—AMEzRaAe (iid) #EED, EAXDAN,, RAMAENS

log po(D Z log pg(x

D X€D
%(X)[logpe(x)]
X2 4 qp(X)REBHIES T
IR

li )
DAL

i=1

FA A gL (x) 8 # 3R F — /N EXD A 89 Dirac delta 5% (3 Fi£ 8 538), &
FoABEA, ABEREEF M XD £ GHF #5848,

AR A AL AL S A 2 18] 6 KL 0 7T VA B Ak :
Dy (ap(¥) Il Po(x)) = ~Eq_([l0gPg(X)] + E, (108 q5(x)]
= -log py(D) + % %
R E A —Jf(qD(x)),ﬁ/MJcii/I\ KL #0U% 50 T & R 483 20K log py(D)
B S BT AT (X P BT R q (3]X), RAVEE] T —AK T 4HE x Foilk T ¥

p,p(X:2) = 4p(x)qy(z | X)

Mt T qp 4(X, 2) 2 pg(x, 2) 2 181 69 KL BOL T A4S M fi 49 ELBO, e E—ANH 4

Dy(05,6%,2) I P(X,2)) = ~Eq 9| Eq 1 0] 108 Po(x 2) - 08 04 2 | )] - Eg [ 108 ()]

= L 4(D) + H #

#R -F(q,(x))
KM R A= ELBO B ARZ A6 % & T A 4o T :
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Dy (9,60 2) I Py(x,2)) = Dy (Ap0)) * Eq [ Dia(900) # Eq Ptz 1 )]
2 Dy, (qp(%) || po(x))

ELBO T AARAL A f — A4 2 b 6 K WA B Ao 3 F EA B 008 % q,(x|2),
TEB R Doy T AEAE A RAE SR X Ao fE MR A0 % 8O RALHR D 41 5 8047 JR

ZI5Th .
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Challenges

. Optimization issues

FAVR I EA AN BT B ARG AL AL T 58 G N T A7 2 69 A% € B 1o 12 25T 45 B,
R log p(x|z)tast %35, BB IRER q(z]x) = p(z), A w5 B AL BLAY
i P47

J6 RAR 0 Rk ERAE R —AMEACRE, P #EAA D (q(z]X) || p(2) #IHE £
%/~ epoch ¥ A 0 1% 1% 3B K 2] 1,

BAEBAMISH KA. R —A DT BARRARENTE | PIRAKELERY
FEAEE A,

M KA B 47 (ML objective) =T A A2 &ML Dy, (q,(X) | po(x)), HF qy(x)2
BIEDH, po(x) RAER ST,

ELBO B 4R 7T pAA 1F & &ML DKL(qM(x, ) || pg(x, z)), HF qp (X, 2) = Apy a4z X)
KL AR 8077 1,2 £ 30 R R TR, I8 2 po(x, 2) 697 2BH A ) 4(X, 2) 0077
2K

ap.p(x,2) = gp(x) qq(z[x) pe(x.z) = pe(z) pe(x|z)
Marginal: qq(z) Prior distribution: pe(z)
v
z-space
5
Encoder: q,(z|x) Decoder: pe(x|z)
Ed
x-space
Data distribution: gp(x) Marginal: pe(x)

ML objective = - DkL( gp(x) || pa(x) )
ELBO objective = - Dx1( qp(x,z) || ps(x.z) )

Abbildung 3: ELBO and Maximum Likelihood Objectives in VAE

This image illustrates the difference between the Maximum Likelihood (ML) objective and the
Evidence Lower Bound (ELBO) objective in the context of a Variational Autoencoder (VAE),
highlighting the roles of the encoder and decoder in the data and latent spaces.
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BAETT Zo 8 HR"AEGAANTAL: HaFe i, H L5 A&7 T 43 = 1] (x-space)
Fa#s /2210 (z-space) #JK F o

AR (hidf): &R (idAL)
2 RIEHH qp(x): RIELE x 2 RS 2 RBRDT py(z): BXMHELELTEL 2
A o ZE A, BERAFEESH .
2 mAE q¢(z|x) s B SR x A G 2 B E py(x|z): WHEZEK 2 ZH
W 2R, ARBELTE fE e x F ), A REIE S
£ ABSH qyz): Az ZEPBLD L 2B H py(X): £ x F N F TR
AT 3] 8 T B 0 T AT B 0 £ R E I8 5
BB X KEEHF qyx) 2t D E RN H pylz) RIETHAELE 7 0404
Qy(z|x) BeAT 2| H 2 F]) g0 EHAZRF, DA B E po(x|z) HHEZE z A=
& RALEAT qy(2) BARZN X AEABZE T, ERLGEDH
Pg(X)-

Blurriness of generative model

2.7 2 @ 425] L ELBO 48 % F R ML Dy (05, 4(%, 2)1Pg(X, 2))0 49 Ry 4(X, 2)Fpg(x, 2)
ZIE AT R R £ A, I Apy(x, 2 pg(X)8 7 £ R LA K T 7 £ 4(x, 2)h S48
Ap p(X)e A H T KL #HEL AT =)

W R (X, 2) LT R A qp , T, B Py, M [Eqw(x'z)[logpe(x, z)] MAETRT . R,
Bt AT T A AR R A (X, 2) M E A B BEF R 8 T ey , TR S % 3]
BRAER .

B, R A T AR i AR — AR 4% R ) M IS A e/ R — AN R 45 R 80 A R
B AR
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Selbststindigkeitserklarung

Hiermit versichere ich, dass ich die vorliegende schriftliche Hausarbeit (Seminararbeit, Be-
legarbeit) selbststandig verfasst und keine anderen als die von mir angegebenen Quellen und
Hilfsmittel benutzt habe. Die Stellen der Arbeit, die anderen Werken wortlich oder sinnge-
maf entnommen sind, wurden in jedem Fall unter Angabe der Quellen (einschliellich des
World Wide Web und anderer elektronischer Text- und Datensammlungen) kenntlich ge-
macht. Dies gilt auch fiir beigegebene Zeichnungen, bildliche Darstellungen, Skizzen und
dergleichen. Ich versichere weiter, dass die Arbeit in gleicher oder dhnlicher Fassung noch
nicht Bestandteil einer Priiffungsleistung oder einer schriftlichen Hausarbeit (Seminararbeit,
Belegarbeit) war. Mir ist bewusst, dass jedes Zuwiderhandeln als Tauschungsversuch zu gel-
ten hat, aufgrund dessen das Seminar oder die Ubung als nicht bestanden bewertet und die
Anerkennung der Hausarbeit als Leistungsnachweis/Modulpriifung (Scheinvergabe) ausge-
schlossen wird. Ich bin mir weiter dariiber im Klaren, dass das zustandige Lehrerprifungs-
amt/Studienbiiro iber den Betrugsversuch informiert werden kann und Plagiate rechtlich als
Straftatbestand gewertet werden.
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